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Structure Lithium Formate Monohydrate, LiHCOO.H20* 
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Room temperature X - N difference electron density maps are calculated for the non-centrosymmetric 
lithium formate monohydrate, a potential ferroelectric, by taking the phases appropriate to Fo, x as those 
calculated from a multipole deformation density refinement [Hirshfeld (1971). Acta Cryst. B27, 769-781 ]. 
Both X - N and multipole deformation density maps are presented, and compared with earlier X - N maps 
derived using less rigorous procedures. 

Introduction 

The X - N difference electron density Px-N at a point 
r in the unit cell is given, following the notation of 
Coppens (1974), by the expression 

1 
px_N(r) = ~ ~ [kFo.x(I'I) - Fc,~c(H)]exp (--2~ziH. r ). 

H 

In an earlier room-temperature determination of the 
X -- N difference density in LiHCOO.H20 (Thomas, 
Tellgren & Almlff, 1975) (hereinafter: TTA), a partial 
solution was attempted by assigning to Fo. x the phases 
calculated from a conventional refinement of the X-ray 
data (using spherical free-atom form factors and 
individual second-rank thermal vibration tensors). The 
maps obtained in this way were found to contain more 
detailed features than those obtained by simply 
allowing Fo. x to take the phases of Fc, N (see below). 

This method is not beyond reproach, however. The 
use of only spherical free-atom form factors biases the 
phases calculated from the refinement, since the model 
takes no explicit account of aspherical stationary 
charge distributions for the atoms. This inadequacy is 
here removed, at least in part, by calculating the phases 
following the refinement of a multipole deformation 

* Hydrogen Bond Studies. CXXXIII. Part CXXXII: Tegenfeldt, 
Tellgren, Pedersen & Olovsson (1978). Acta Cryst. To be published. 

density function model (Hirshfeld, 1971; Harel & 
Hirshfeld, 1975). 

Calculation of the maps 

The multipole deformation density refinement is here 
made using fixed atomic positional and thermal param- 
eters obtained from the earlier neutron diffraction study 
(Tellgren, Ramanujam & Liminga, 1974). This is 
tantamount to expanding the X - N difference density 
in a basis of deformation density functions centred on 
the nuclei of the structure (Fig. 1). The deformation 
model used (Table 1) is described in detail by Hirshfeld 
(1971). Fixing the neutron-diffraction-determined nuc- 
lear positional and thermal parameters eliminates the 
possibility for correlation effects between bonding and 
vibrational smearing (Hirshfeld, 1976). It is important 
that the deformation model should not be constrained 
in such a way as to impose a significant bias on the 
calculated phases, and hence on the subsequent 
appearance of the X - N maps. The latter will clearly 
still be affected by systematically incorrect positional 
and thermal parameters from the neutron study, but 
this is true for centro- and non-centrosymmetric 
structures alike; it can be combatted only by careful 
attention to all sources of systematic experimental 
error, particularly the treatment of extinction. 
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All experimental detail is as described in TTA, but 
some points associated with the deformation refine- 
ment are added here. 

(a) The I Fo, xl values used as input were previously 
corrected for extinction (see TTA). No further refine- 
ment of extinction was performed. 

(b) Reflexions with EXT(F)  > 1.07 (four in all) 
were not included, neither were 217 reflexions with F 2 
< ( 3 G ( F 2 ) ,  where o 2 ( F 2 )  = trcount( F 2  2) + ( 0 . 0 4 F 2 ) 2 .  

Table 1. The multipole deformation density model 
refined for LiHCOO. H20 after Hirshfeld (1971) 

The static deformation density is expressed as 
Z e.k ~P,,~ (r, 0), 

n,k 

where the c.k's are refinable deformation coefficients. The deforma- 
tion functions used, ~0.k, have the general form 

N.r"exp ( - ? r  2) cos ~ 0k, 

where N n is a normalization factor, n is an integer between 0 and 4, 
0 k is the angle between r and the kth of a chosen set of polar axes, 
and ~, is a parameter governing the breadth of the deformation 
function. The dynamical deformation density is obtained from the 
static density by applying the refined thermal parameters. The net 
charge quoted in the right-hand column is the sum of the C.k'S for 
the k-even terms. 

Number  
of deformation 

Atom Point symmetry density functions Net charge (e) 

Li spherical 1 +0.77 

H rotation 6 
C m 22 
O(1) m 22 - 0 . 6 6  
0(2)  m 22 

O(W) 1 35 
H(1) rotation 6 / --0.11 
H(2) rotation 6 

Total: 120 

\ 

AF 

Fob X-N 

\ ~ ~  A-Fdef 

Fig. 1. Diagram illustrating the relation between the dynamic 
vectors F o x, Fc.~, Fd~l," AFx-N, AF d f and AF (F o x -- Fe x 
residue) for tlae spectal situation w[~en the total 'deformed 
structure factor Fde is taken to be the sum of F c N and the 
deformation vector ~]Fa~ r 

(c) Fixed nuclear positional and thermal parameters 
were taken from TeUgren, Ramanujam & Liminga 
(1974), free-atom form factors for Li ÷, H, C and O 
were described in TTA. 

(d) The refined deformation model is summarized in 
Table 1. Note that no constraints were applied to the 
deformation functions associated with the water O 
atom, whereas only a spherical deformation term was 
refined for Li +. The start value for the deformation 
coefficient of Li + was 1.0, all other start values were 
zero. The refined structural model was thus neutral 
from the outset, and constrained to remain so through- 
out. 

(e) Final agreement factors (defined in the usual 
way) after the deformation refinement were R(F 2) = 
0.027 and Rw(F 2) = 0.071. The final R(F) value in 
TTA was 0.033, where only data with F 2 < 2a(F 2) 
were removed and extinction-affected reflexions were 
not rejected. 

(a) 

(3 

(b) 

~d) 

) . ,  

(e) 
Fig. 2. (a)-(c) X -- N difference density maps (d) dynamic and (e) 

static deformation density maps for the H C O O -  ion in 
L iHCOO.H20 .  Maps (a) and (b) were calculated as described 
in TTA. All contour intervals 0.05 e A -3. Zero contour omitted. 
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( f )  After four cycles of refinement no shifts were 
>0. la. 

The resulting X - N maps for the H C O O -  ion and 
the H~O molecule are given in Figs. 2 and 3 along with 
earlier maps for comparison. The static and dynamic 
deformation density maps are also included for 
comparison. 

The magnitudes of the mean phase differences IA(01 
between Fo, x and Fe, ~ for different I FI ranges are given 
in Table 2 for both the earlier (TTA) and the present 
approach. These differences are also analysed in Fig. 4, 
which shows that IA¢I values for weaker reflexions are 
systematically smaller from the present method; this 
difference disappears for higher I Fo, xl values. Note that 
hk0-type reflexions, for which Acp is identically zero, are 
not considered in this analysis. It is not clear whether 
the trend seen here for small IFl's is in any way 
general; it could, for example, be an artefact of the one- 
electron deficient model used to calculate F~, s. 

Discussion 

Any attempt to obtain an X - N deformation density 
map for a non-centrosymmetric structure must, of 
necessity, be approximate. The problem is to assess the 
extent to which these approximations yield meaningful 
maps. 

A reasonable requirement for the correctness of  
phases calculated from the deformation refinement is 
that the resulting X-ray difference Fourier map be 
essentially featureless (Coppens, 1974). Two such 
syntheses (Fig. 5b, d) are compared with the correspon- 
ding difference syntheses after conventional X-ray 
refinement (Fig. 5a, c). Although the difference map for 
H C O O -  is considerably 'cleaner' after deformation 
refinement (cf. Fig. 5a and b) the corresponding 
situation for the H~O maps is not so encouraging. 
Systematic features remain in the maps even after the 
deformation refinement (cf. Fig. 5c and d). There is no 
obvious explanation for this difference. It is unlikely 
that some inadequacy in the thermal model (e.g. neglect 
of anharmonicity) could result in such a large effect. 
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Fig. 3. (a)-(c) X - N difference density maps, (d) dynamic ana (e) 

static deformation density maps for the H20 molecule in 
LiHCOO.H20. Maps (a) and (b) were calculated as described 
in TTA. All contour intervals 0.05 e A -3. Zero contours omitted. 

Table 2. The m e a n  p h a s e  d i f ference  (o) be tween  Fo, x 
a n d  Fe, lV as ca lcu la ted  in T T A  (IAfp~ I) a n d  in the  
p re sen t  approach  (IA~ 2 I) f o r  d i f ferent  I F I ranges  

N is the number of reflexions in a given range. 

I FI range iA~ol I IA¢pz I N 

0.75-2* 3.33 1.50 343 
2-4 2.18 1.38 181 
4-6 1.63 1.79 57 
6--8 1.11 1.13 40 
8-10 1.13 1.19 22 

10-12 0.71 0-66 11 

* Reflexions with 0 < IFI ~ 0.75 removed 

a 
× 

IA@I 
2. 

1 

[ ~  c o n y .  ref. 

. . . . .  . . ref. 

0 2 4 6 8 10 12 

IFI 
Fig. 4. Mean phase difference between Fc, x and Fc, N for different 

ranges of lFI and different methods of calculating Fc, x. 
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It may be noted that, for the deformation model used 
here, with Fde f ---- Fc. N + AFde r (Fig. 1), the X -- N map 
[e.g. Fig. 2(c) for HCOO-]  should simply be the sum of 
the dynamic deformation map (Fig. 2d) and the residue 
map (Fig. 5b). That this is not exactly true (even for 
regions some distance away from the atom centres) is 
because Fc. N has been evaluated for a non-neutral 
asymmetric unit (Li +, HCOO and H 2 0 ) ,  with AFde f 

accounting for the remaining electron. Fo. x has, 
however, been scaled to Fc, N in the subsequent 
calculation of the X - N maps. 

It follows, therefore, that the X -- N map exhibits 
good quantitative agreement with the thermally 
smeared deformation density map for the HCOO-  ion 
(Fig. 2c and d), while the maps for the water molecule 
differ significantly (Fig. 3c and d). 

The large negative regions in the refined deformation 
density maps in the vicinity of atom centres have no 
physical significance. These are artefacts of the 
behaviour of the radial functions as r approaches zero. 

T h e  HCOO-  ion 

It is encouraging that the static deformation density 
maxima in the C ~ O  bonds (Fig. 2e) are virtually 
identical (0-70 e A-3). This would be expected on 
chemical grounds and was indeed also found in the 
earlier study (Fig. 2b). It can be noted that the maxima 
in these bond densities are insignificantly higher in the 
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(d) 
Fig. 5. (F o -- F c) difference density maps following the con- 

ventional refinement (a and c) and the deformation refinement (b 
and d). Contour intervals 0.05 e A -3. Zero contour omitted. 

new (dynamic) X - N maps than in the earlier maps 
(cf. Fig. 2 c and b). The maximum associated with the 
C - - H  bond is similarly unchanged. On the other hand, 
we see that the lone-pair features in the new maps are 
considerably more distinct. It is of interest to examine 
these in detail in the light of trends noted recently 
(Thomas, 1977) in the lone-pair regions of the 
hydrogen-bonded system (CHa)2NH2HC204. The lone- 
pair maxima in the static deformation density map 
(Fig. 2e) are ~0.52 and ~0.40 e A -3 for O(1) and 
~0.42 and ~0-30 e A -3 for 0(2). In the case of O(1), 
the difference is accompanied by different acceptance 
situations. The weaker peak lies in the direction of 
acceptance of the strongest hydrogen bond in the 
structure [H(1) ... O distance 1.742 (3) A] (see TTA). 
The other peak corresponds to a L i - -O  contact of 
1.941 (5) A. For 0(2) the two peaks lie roughly along 
Li---O contacts of 1.964 (4) and 1.927 (5) A respec- 
tively. In both cases, the apparently weaker electro- 
static interaction corresponds to the stronger lone-pair 
peak. Neither of these effects in the maps is more than 
marginally significant, however. 

T h e  H20 m o l e c u l e  

The systematic character of the content of Fig. 5(d) 
encourages little confidence in the meaningfulness of 
the new difference density maps for the water molecule 
(Fig. 3c -e ) .  The differences noted earlier between the 
regions of H(1) and H(2) (Fig. 3b) and also found in a 
recent reinvestigation by Harkema, de With & Keute 
(1977), have all but disappeared as a result of the 
present treatment. The only feature remaining is the 
well-developed oxygen lone-pair density in the defor 
marion density maps (Fig. 3d and e). The discrepancy 
between this feature and the appearance of the X - N 
map (Fig. 3c) nevertheless remains unexplained. 

X - N  maps versus  deformation density refinement 

In the light of the above, it is natural to question the 
value of calculating an X - N map, especially in the 
case of a non-centrosymmetric structure. The following 
advantages of a refinement procedure are clear. 

(i) First (and most obvious), a refinement is insen- 
sitive to whether or not the structure is centro- 
symmetric. 

(ii) The mathematical model for the difference 
density can be used directly to obtain other physical 
quantities, e.g. effective atomic charge (and hence 
charge transfer), dipole moment, electrostatic potential, 
etc. 

(iii) The need for neutron data is reduced in as much 
as the refinement procedure can, in principle, distin- 
guish the effects of bonding and thermal motion 
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(Hirshfeld, 1976). Neutron data are highly desirable 
when hydrogen atoms are present, however; but note 
Stevens & Hope (19 75). 

(iv) Series-termination effects do not arise in a 
refinement approach.  

(v) There is no 'noise' as such in the resulting 
deformation maps. 

(vi) A deformation refinement should give an essen- 
tially correct scale factor. 

(vii) An estimate of  the error in the refined defor- 
mation density is readily obtainable. 

An X - N map, at least for a centrosymmetric 
structure, can nevertheless serve the useful purpose of 
representing the difference density unbiased by func- 
tions chosen to describe the deformation. It can thus 
be used to assess appropriate constraints for a sub- 
sequent deformation model refinement. 
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tation in Uppsala.  I am also greatly indebted to 
Professor Ivar  Olovsson for his active interest a n !  
support. This work has been financed by grants from 
the Swedish Natura l  Science Research Council. 
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C o n v e r g e n c e  o f  Bril louin z o n e  s u m m a t i o n s .  By PETER A. KROON and AAFJE VOS, Laboratorium voor Structuur- 
chemie, Rijksuniversiteit Groningen, Nijenborgh 16, 9747 A G Groningen, The Netherlands 

(Received 31 January 1978; accepted 21 February 1978) 

A simple method to overcome convergence problems in Brillouin zone summations of lattice dynamical properties is pro- 
posed, which makes use of evenly spread sample points and gives a special treatment to points close to the Brillouin zone 
origin. 

Calculation of T, L and S tensors and thermal diffuse 
scattering involves integration over the Brillouin zone (BZ), 
or part of it, of functions which are quadratic in the vibra- 
tion amplitudes u. For the acoustic modes tr with small wave 
vector k, the u values vary according to 

u(ak) = D(ok-')/k, (1) 

where D(ak-') is a function smoothly varying with [ ,  and f~ is a 
unit vector in the direction of k. Because 

lim u2(ok) = ~ (2) 
k--,0 

difficulties arise if the integration is to be done numerically 
since the contribution I(vo) of the volume element v 0 around 
k = 0 cannot be obtained as u2(o,k = 0)v 0. An estimate of 
this contribution can be obtained by analytical integration of 
(1). For a cone around k with opening angle d~, and its apex 
coinciding with k = 0 the integrated value is given by 

I ( k ) =  O(ok-') kmax d~//, (3) 

where kma x is the height of the cone. From this it can be seen 
that for numerical integrations extremely dense sampling 
around k = 0 is required to make I(vo) negligibly small with 
respect to the contributions of the remaining volume ele- 
ments, since I(vo) does not approach zero with v 0 (or k3max ) 
but with kma x. Filippini, Gramaccioli, Simonetta & Suffritti 
(1976) proposed a method to overcome the convergence 
problem which is based on a non-isometric sampling grid 
with dense sampling around k = 0. We have tested their 
method by calculating the integral of a simple k -2 function, 
but have not achieved the improvement in convergence 
claimed in their paper. Moreover, sampling methods which 
make use of unevenly distributed grid points require more 
programming effort and can become quite cumbersome in, 
for instance, the double BZ summations occurring in the 
expressions for the second-order thermal diffuse scattering 
(Kroon & Vos, 1978a). 

Since the convergence problem is caused by the behaviour 
of the acoustic lattice vibrations close to k = 0, and the shape 


